

Myocardial stunning και regional wall motion abnormalities: το κλειδί για την κατανόηση του αιφνίδιου θανάτου σε ασθενείς υπό αιμοκάθαρση;

Βασίλειος Καμπερίδης MD, MSc, PhD, FESC, FEACVI

Επίκουρος Καθηγητής Καρδιολογίας ΑΠΘ

Α' Καρδιολογική Κλινική ΠΓΝΘ ΑΧΕΠΑ

Αθήνα, 19 Ιουνίου 2024

Sudden Cardiac Death in Hemodialysis Patients: An In-Depth Review

Darren Green, MBChB,¹ Paul R. Roberts, MD,² David I. New, PhD,¹ and Philip A. Kalra, MD¹

Sudden and unexpected death accounts for 1 in 4 deaths in patients with end-stage renal disease (ESRD)

Box 2. Current Indications for ICD Device Therapy in the General Population

Survival of cardiac arrest due to VT or ventricular fibrillation
Episode of sustained VT causing severe hemodynamic compromise
Episode of sustained VT without hemodynamic compromise + EF <35%
MI + EF <35% + nonsustained VT on 24-h ECG + inducible
VT on electrophysiologic testing

MI + EF < 30% + QRS duration ≥ 120 ms on ECG

Sudden cardiac death in dialysis patients: different causes and management strategies

Simonetta Genovesi (D^{1,2}, Giuseppe Boriani (D³, Adrian Covic^{4,5}, Robin W.M. Vernooij^{6,7}, Christian Combe (D^{8,9}, Alexandru Burlacu (D^{5,10}, Andrew Davenport¹¹, Mehmet Kanbay¹², Dimitrios Kirmizis¹³, Daniel Schneditz¹⁴, Frank van der Sande¹⁵ and Carlo Basile^{16,17} on behalf of the EUDIAL Working Group of ERA-EDTA

Sudden Cardiac Death Among Hemodialysis Patients

Melissa S. Makar, MD,^{1,2} and Patrick H. Pun, MD, MHS^{1,2}

Figure 2. Rates of sudden cardiac death in (left) selected populations and (right) absolute numbers of affected individuals. Abbreviations: CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; ND, nondialysis.^{16,23}

Sudden Cardiac Death Among Hemodialysis Patients

Melissa S. Makar, MD,^{1,2} and Patrick H. Pun, MD, MHS^{1,2}

Figure 4. Major hypothesized risk factors for sudden cardiac death including postulated pathophysiology of sudden cardiac death. Based on information in Di Lullo et al.⁷⁸

Risk Assessment for Sudden Cardiac Death in Dialysis Patients

Palaniappan Saravanan, MD, MRCP; Neil C. Davidson, MD, FRCP

Table 1.Factors Predisposing Dialysis Patients to VentricularArrhythmias and SCD

Factors				
Hemodynamic andVolume overloadbiochemical factorsElectrolyte abnormalities, particularly hyper- and	Volume overload	Changes to the substrate	LVH/dilation LVSD	
	hypokalemia		Diffuse myocardial fibrosis altering conduction and repolarization	
	Changes in calcium and phosphate metabolism and hyperparathyroidism		Atrial dilation/stretch due to chronic fluid overload	
	Alterations in acid-base balance (blood pH and		Scars of previous myocardial infarctions	
	bicarbonate levels)	Precipitating	Rapid fluctuations in volume status and blood	
	Anemia	factors	pressure around dialysis	
	Hypertension		Fluctuations in electrolytes, particularly potassium, around dialysis	
Autonomic and endocrine factors	Loss of vagal tone due to uremia (uremic autonomic neuropathy)		Acute coronary ischemia	
	Reduced catabolism of circulating adrenergic		Hypoxia due to sleep apnea	
	hormones		Acute changes in autonomic regulation during dialysis	
	Diabetic autonomic neuropathy			
	Activation of renin-angiotensin-aldosterone axis			

Fourth universal definition of myocardial infarction (2018)

EXPERT CONSENSUS DOCUMENT

 Table I
 Reasons for the elevation of cardiac troponin

 values because of myocardial injury

Ά Καρδιολογική Κλινική ΑΧΕΠΑ

Myocardial Stunning with Hemodialysis: Clinical Challenges of the Cardiorenal Patient

Table 1. Directions for future investigation and clinical implementation

Peritoneal dialysis versus HD Antioxidants/anti-inflammatory agents Remote preconditioning HD protocol Dialysate temperature (37°C vs. cooled) Dialysis frequency (daily vs. thrice/week) Volume removed per session (i.e. decreasing ultrafiltration) Session duration of dialysis (long vs. short) Location/vessel of AFV/catheter Central venous catheter versus AVF versus arteriovenous graft Flow rate during HD (lower flow rate vs. higher flow rate)

Speckle Tracking Left Ventricular Global Longitudinal Strain

Myocardial stunning in hemodialysis: What is the overall message?

Smrita DORAIRAJAN,^{1,2} Anand CHOCKALINGAM,^{1,3} Madhukar MISRA²

THE REPORT OF TH

Table 1 Possible mechanisms/contributors of cardiac^{^Α Καρδιολογική Κλινική ΑΧΕΠΑ} dysfunction in hemodialysis (HD) patients

Renal replacement predictors

- 1. Ultrafiltration rate
- 2. HD-related hypotension
- 3. Dialysate temperature
- 4. Rapid HD performed infrequently

Cardiac predictors

- 1. Small cardiac chamber size
- 2. Chamber hypertrophy
- 3. Epicardial coronary disease with typical ischemia
- 4. Microvascular endothelial dysfunction
- 5. Frequent ventricular ectopy and tachycardias

General medical issues

- 1. Overmedication with antihypertensive agents
- 2. Reduced fluid intake
- 3. Volume loss related to sweating, bleeding, etc.
- 4. Reduced exercise and muscle tone

Chronic Kidney Disease and Coronary Artery Disease

JACC State-of-the-Art Review

CENTRAL ILLUSTRATION Changes in Cardiovascular Disease Risk During Chronic Kidney Disease Progression

Cardiovascular disease (CVD) event **(upper triangle)**; contributions of atherosclerotic CVD **(yellow)**; nonatherosclerotic CVD **(purple)**, and risk of fatality after CVD event **(blue)**. Reproduced with permission from Wanner et al. **(10)**, CAD = coronary artery disease; LVH = left ventricular hypertrophy.

Coronary computed tomography angiography in dialysis patients undergoing pre-renal transplantation cardiac risk stratification

FIGURE 1 Coronary Plaque Characteristics Identified on Computed Tomography Coronary Angiography

D

Prognostic Value of Risk Factors, Calcium Score, Coronary CTA, Myocardial Perfusion Imaging, and Invasive Coronary Angiography in Kidney Transplantation Candidates

Number of risk factors by (A) major adverse cardiac events (MACE) and (B) mortality. The green and pink lines represent patients with <3 versus ≥ 3 risk factors, respectively. Coronary artery calcium score group by (C) major adverse cardiac events and (D) mortality. The green, yellow, and pink lines represent patients with coronary artery calcium scores of 0, 1 to 399 versus ≥ 400 . Number of risk factors combined with coronary artery calcium scores by (E) major adverse cardiac events and (F) mortality. The green yellow, and pink lines represent patients with <3 risk factors and coronary artery calcium scores by scores <400 versus ≥ 400 , respectively. The pink solid and dashed lines represent patients with ≥ 3 risk factors and coronary artery calcium scores <400 versus ≥ 400 , respectively. The pink solid and dashed lines represent patients with ≥ 3 risk factors and coronary artery calcium scores <400 versus ≥ 400 , respectively.

Ά Καρδιολογική Κλινική ΑΧΕΠΑ

Occurrence of Regional Left Ventricular Dysfunction in Patients Undergoing Standard and Biofeedback Dialysis

Nicholas M. Selby, MD, Stewart H. Lambie, MD, Paolo G. Camici, MD, Christopher S. Baker, MD, and Christopher W. McIntyre, MD

Table 4. Global (EF) and Regional (SF) LV Function During Standard (HD) and Biofeedback Dialysis							
	EF (%)	SF _(mean) (%)	SF _(WMA) (%)				
HD							

Baseline	50.1 ± 10.7	$\textbf{2.64} \pm \textbf{1.5}$	$\textbf{2.98} \pm \textbf{1.7}$
Peak	$\textbf{48.7} \pm \textbf{12.3}$	2.26 ± 1.4 *	1.69 ± 1.0†
Recovery	53.4 ± 13.3	$\textbf{2.64} \pm \textbf{1.3}$	2.38 ± 1.3 †‡

Hemodialysis-Induced Cardiac Injury: Determinants and **Associated Outcomes**

James O. Burton,* Helen J. Jefferies,* Nicholas M. Selby,* and Christopher W. McIntyre*[†]

All Patients	5
(n = 70)	

Patients with RWMAs (n = 45)

Predialysis blood testing Parameter Patients Patients with without P value RWMAs **RWMAs** Haemoglobin (g/dl)0.15 11 ± 1.3 11.5 ± 1 Haematocrit (%) 36 ± 4 36 ± 2 0.35 Na^+ (mEq/L) 138 ± 3 139 ± 4 0.18 K^+ (mEq/L) 4.8 ± 0.8 4.7 ± 0.9 0.89 Urea nitrogen (mg/dl) 59.1 ± 15.1 55.5 ± 14.0 0.33 Creatinine (mgl/dl) 8.8 ± 2.5 9.8 ± 2.9 0.13 Phosphorus (mg/dl) 5.3 ± 1.2 5.0 ± 1.9 0.42 Bicarbonate (mEq/L) 22.7 ± 3.0 22.8 ± 3.2 0.87 9.68 ± 0.6 9.6 ± 0.6 0.58 Calcium (mg/dl) 3.5 ± 0.4 Albumin (g/dl) 3.7 ± 0.3 0.02 hsCRP (mg/L) 1.2 ± 1.0 0.8 ± 0.7 0.13 0.098 ± 0.08 0.036 ± 0.04 0.001 cTnT (ng/ml)

Patients *without* RWMAs (n = 25)

_

Table 3. The effect of increasing ultrafiltration (UF) volume and worsening intradialytic haemodynamics on the development of HD-induced RWMAs

Factor associated with presence of myocardial stunning	Odds Ratio	P value
UF volume during HD of 1L	5.1	0.007
UF volume during HD of 1.5L	11.6	
UF volume during HD of 2L	26.2	
Maximum SBP reduction during HD of 10 mmHg	1.8	0.002
Maximum SBP reduction during HD of 20 mmHg	3.3	
Maximum SBP reduction during HD of 30 mmHg	6.0	

90-

Patients without evidence of HD-induced RWMAs[†]

Hemodialysis-Induced Cardiac Dysfunction Is Associated with an Acute Reduction in Global and Segmental Myocardial Blood Flow

Christopher W. McIntyre,*[†] James O. Burton,* Nicholas M. Selby,* Lucia Leccisotti,[‡] Shvan Korsheed,* Christopher S.R. Baker,[‡] and Paolo G. Camici[‡]

PET and ECHO

Figure 1. Mean global myocardial blood flow (MBF) reduced significantly during dialysis from baseline with partial restoration in the recovery period.

Figure 3. The development of regional ventricular dysfunction as measured by regional wall motion abnormalities (RWMA; abnormal regions) was associated with a greater reduction in MBF from baseline than areas that maintained normal movement (normal regions; P = 0.001).

Figure 4. An MBF reduction of \geq 30% was associated with a mean reduction in wall motion of -15.2%; however, an MBF reduction of <30% was associated with a mean increase in wall motion of 5% (P < 0.01).

Clin JASN 2008

Haemodialysis is associated with a pronounced fall in myocardial perfusion

Judith J. Dasselaar^{1,2}, Riemer H. J. A. Slart³, Martine Knip², Jan Pruim³, René A. Tio⁴, Christopher W. McIntyre⁵, Paul E. de Jong² and Casper F. M. Franssen^{1,2}

Fig. 3. Relationship between the relative change in myocardial blood flow and the relative change in cardiac output (both from baseline). The open squares represent the correlation at 30 min of HD (not significant). The closed squares represent the correlation at 220 min of HD (r = 0.84; P = 0.03).

Association of segmental wall motion abnormalities occurring during hemodialysis with post-dialysis fatigue

Table 2. Adjusted relative risk for severe PDF							
	Model	Model 1			Model 2		
	RR	(95% CI)	P-value	RR	(95% CI)	P-value	
Change in the wall motion abnormality score (point)	1.2	(1.1, 1.3)	< 0.001	1.9	(1.4, 2.6)	< 0.001	
Depression	3.4	(1.3, 9.0)	0.01	2.0	(0.6, 6.8)	0.3	
Decrease in SBP during dialysis (mmHg) ^{a,b}	_	—	—	1.6	(0.8, 3.1)	0.15	
Increase in SBP during dialysis (mmHg) ^{a,b}	_	—	—	1.1	(0.6, 2.2)	0.7	
Ultrafiltration (L) ^b	_	_	_	1.0	(0.7, 1.4)	0.9	

ing	Absent or mild fatigue ^a $(n = 32)$	Severe fatigue ^a (n = 8)	Univariate relative risk for severe PDF		
C			RR	95% CI	P-value
Demographics	I	1	1	1	1
Age (years)	61 (±15)	61 (±15)	0.99	(0.97, 1.0)	0.9
Dialysis vintage (years)	5 (±6)	3.3 (±2)	0.92	(0.8, 1.0)	0.16
Male gender	25 (78%)	8 (100%)	1.3	(0.4, 5.1)	0.7
Caucasian race	6 (19%)	3 (38%)	2.5	(0.95, 6.6)	0.06
Clinical factors		•			
History of depression	5 (18%)	3 (30%)	4.6	(1.8, 12)	0.002
Diabetes	15 (47%)	3 (38%)	0.6	(0.2, 1.9)	0.4
Atherosclerosis ^b	14 (44%)	4 (50%)	1.6	(0.5, 4.7)	0.4
Myocardial infarction	8 (26%)	1 (13%)	0.7	(0.2, 1.9)	0.4
Congestive heart failure	6 (19%)	0 (0%)	0.3	(0.05, 1.4)	0.1
Pre-dialysis SBP (mmHg) ^{c,d}	140 (±18)	143 (±7)	1.1	(0.9, 1.5)	0.4
Hemoglobin (g/dL)	11 (±1)	11 (±2)	0.9	(0.6, 1.2)	0.4
Albumin (g/dL)	3.7 (±0.4)	3.6 (±0.5)	0.6	(0.2, 1.3)	0.19
Phosphorus (mg/dL)	5.3 (±2)	5.6 (±1)	1.1	(0.9, 1.4)	0.5
Parathyroid hormone (mg/dL)	286 (7, 2800)	331 (97, 2800)	1.0	(0.99, 1.0)	0.4
Dialysis-related factors		1		1	
Symptomatic hypotension ^e	6 (19%)	2 (25%)	1.5	(0.7, 3.6)	0.3
Decrease in SBP during dialysis (mmHg) ^{c,d}	25 (±15)	32 (±8)	1.3	(0.96, 1.8)	0.09
Increase in SBP during dialysis (mmHg) ^{c,d}	13 (±9)	9 (±5)	0.5	(0.3, 1.1)	0.1
Ultrafiltration ^c (l)	2.5 (±1)	3 (±1)	1.4	(0.9, 2.1)	0.19
Kt/v	1.6 (±0.3)	1.6 (±0.3)	0.8	(0.18, 3.4)	0.8
Echocardiographic factors		1		1	
Left ventricular mass index (g/m ²)	99 (59, 172)	87 (61, 170)	0.3	(0.07, 1.3)	0.1
Baseline abnormal diastolic function	22 (69%)	5 (63%)	0.7	(0.3, 1.5)	0.4
Baseline ejection fraction ^d	57% (±7%)	56% (±5%)	< 0.001	(<0.001, >1000)	0.5
Baseline WMA	8 (25%)	2 (25%)	0.6	(0.13, 2.4)	0.4
Worsened WMA (dichotomous)	5 (16%)	4 (50%)	1.7	(1.1, 1.9)	0.04
Average change in the WMA score (point)	0 (-1.5, 2.7)	0 (0, 8)	1.1	(1.1, 1.2)	< 0.001

Table 1. Cohort characteristics and univariate relative risks for PDF

Echocardiography in Hemodialysis Patients: Uses and Challenges

Diana Y.Y. Chiu, MBChB,^{1,2} Darren Green, PhD,^{1,2} Nik Abidin, MBBS,³ Smeeta Sinha, PhD,^{1,2} and Philip A. Kalra, MD^{1,2}

CrossMark

of maximum volume (A), the ventricle will shorten longitudinally from the base to the apex (B to C), undergo torsion/twisting around its longitudinal axis (D) and radial strain that causes a thickening of the myocardial wall and a narrowing of the perpendicular radius (E to F). The resultant change in LV cavity volume (A to G) represents ejection fraction. Reproduced from Green et al⁻⁻⁻⁻ with permission of Oxford University Press.

AJKD

In Practice

Left Ventricular Systolic Strain in Chronic Kidney Disease and Hemodialysis Patients

Yen-Wen Liu^{a, b} Chi-Ting Su^c Yao-Yi Huang^b Chun-Shin Yang^e Jenq-Wen Huang^d Mao-Ting Yang^e Jyh-Hong Chen^a Wei-Chuan Tsai^a

Fig. 3. Using linear regression analysis, left ventricular GS decreased significantly with deteriorating renal function (eGFR) in the controls and the moderate-advanced CKD group.

Aqute Stunning Effect of Hemodialysis on Myocardial Performance: a Three Dimensional Speckle

Tracking Echocardiographic Study

Table-2. Left ventricle analysis before and after HD.

Left ventricle (LV) (n:38)	Pre-hemodialysis	Post-hemodialysis	p value
End diastolic volume index (EDVi) (ml/m ²)	69 ± 23	57 ± 23	<0.001
End systolic volume index (ESVi) (ml/m ²)	32 ± 18	28 ± 16	0.010
Stroke volume index (SVi) (ml/m ²)	37 ± 10	28 ± 10	<0.001
LV mass index (LVMi) (g/m²)	72 ± 10	68 ± 8	0.022
Ejection fraction (EF) (%)	55 ± 9	52 ± 9	0.001
Cardiac output (CO) (lt/min)	4.9 ± 1.6	3.9 ± 1.4	<0.001
Global longitudinal strain (GLS) (%)	-14.2 ± 5.2	-11.1 ± 4.6	<0.001
Global circumferential strain (GCS) (%)	-14.8 ± 4.2	-12.4 ± 5.2	0.009
Global radial strain (GRS) (%)	41.5 ± 16	33.3 ± 16.5	0.003
Global area strain (GAS) (%)	-24.7 ± 7.2	-20.1 ± 7.6	0.001
TWIST (degree)	4.7 ± 4.2	5.6 ± 4.9	0.413
TORSION (degree/cm)	0.87 ± 0.61	1.25 ± 1.34	0.285
p< 0,05			

Table-6. The effect of beta blocker treatment on strain parameters before and after HD.

		Beta Blocker					
	Before	After	р	Before	After	p	
		User (n:19)			Non user (n:19)		
GLS (%)	-12.9 ± 5.3	-11.9 ± 5.1	0.243	-15.5 ± 5.1	-10.3 ± 4.1	<0.001	
GCS (%)	-14.1 ± 4.4	-14.1 ± 5.8	0.953	-15.4 ± 4	-10.9 ± 4.2	0.001	
GRS (%)	38.3 ± 16.4	37.9 ± 19.4	0.909	44.5 ± 15.6	29.1 ± 12.6	<0.001	
AREA (%)	-23 ± 7.6	-22.3 ± 8.4	0.683	-26.3 ± 6.6	-18.1 ± 6.5	<0.001	

Table-4. Relationship between changes in strain parameters and blood pressure.

	Systolic	tension	Diastolio	c tension	Pu	Ilse
Left ventricle	r	p	r	p	r	р
GLS	0.527	0.002	0.435	0.015	0.368	0.042
GCS	0.410	0.022	0.310	0.089	0.287	0.117
GRS	0.411	0.022	0.411	0.022	0.380	0.035
AREA	0.446	0.012	0.385	0.032	0.425	0.017

Table-7. The effect of calcium channel blocker treatment on strain parameters before and after HD.

		Calcium channel blocker				
	Before	After	p	Before	After	р
		User (n:18)		Γ	lon user (n:20)	
GLS (%)	-14 (-18, -4)	-11 (-18, -3)	0.090	-16.2 ± 5.1	-10.8 ± 5.1	<0.001
GCS (%)	-13.7 ± 4	-13 ± 5.6	0.536	-15.9 ± 4.2	-11.9 ± 5	0.006
GRS (%)	35.5 ± 13.6	34.8 ± 15.4	0.763	52.5 (21, 68)	27.5 (10, 80)	0.002
AREA (%)	-22 ± 6.8	-21.2 ± 7.7	0.565	-30 (-35, -16)	-18 (-33, -8)	0.001

The Impact of Hemodialysis on Segmental and Global Longitudinal Myocardial Strain

Shih-Han S. Huang, MD,^{a,b,c} Lisa E. Crowley, MD,^a Helen J. Jefferies, MD,^a Mohamad T. Eldehni, MD,^a Aghogho Odudu, MD,^a and Chris W. McIntyre, MD^{a,b}

350 300

60

Table 1. The segmental longitudinal strain values: before dialysis and at peak dialysis

	Before di	Before dialysis		Peak dialysis	
Segment	Mean (%)	SD	Mean (%)	SD	P
Basal inferior	-10.1	7.46	-9.8	7.66	0.73
Midinferior	-14.7	6.64	-13.7	7.14	0.20
Apical inferior	-16.7	8.23	-15.3	8.69	0.10
Apical anterior	-10.3	8.95	-10.0	8.67	0.77
Midanterior	-8.3	7.15	-6.8	7.27	0.10
Basal anterior	-8.2	7.86	-6.4	7.69	0.06
Basal septal	-9.4	6.59	-8.3	6.80	0.18
Midseptal	-13.7	6.23	-12.5	6.20	0.13
Apical septal	-15.16	8.64	-13.7	8.55	0.09
Apical lateral	-10.1	10.03	-10.0	8.78	0.96
Midlateral	-9.6	8.25	-8.3	7.56	0.14
Basal lateral	-9.3	8.13	-6.8	7.13	0.01

Figure 3. Kaplan-Meier Analysis comparing survival time between the groups that had > 80% of segments above the mean segmental longitudinal strain, and \leq 80% of segments above the mean segmental longitudinal strain.

Estimated left ventricular pressure-myocardial strain loop as an index of cardiac work predicts all-cause mortality in patients receiving regular hemodialysis

Ke-Wei Chen ^{a,b}, Wen-Tsong Hsieh ^c, Chih-Yang Huang ^{d,e,f}, Chih-Chia Huang ^a, Hsin-Yueh Liang ^{b,g,*}, Guei-Jane Wang ^{a,d,e,h,**}

K.-W. Cnen, W.-I. Hsien, C.-Y. Huang et al.

GLS ≤ -18.15

GLS > -18.15

45

57

21

Journal of Diabetes and its Complications 35 (2021) 107890

35

Table 2

Univariate and multivariable Cox regression analyses of all-cause mortality.

	Univariate Cox analysis		Multivariate Cox analysis				
			Model 1		Model 2		
	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value	
Age (≧70 yrs) CWI (<1271 mmHg%) GLS (>−18.15%)	3.28 (1.61–6.69) 5.11 (2.40–10.91) 2.82 (1.26–6.34)	0.001 <0.001 0.012	2.91 (1.40–6.07) 2.97 (1.26–7.01) 1.82 (0.71–4.65)	0.004 0.013 0.211	2.66 (1.29–5.49) 4.30 (2.00–9.25)	0.008 <0.001	

Abbreviations: CWI = cardiac work index. GLS = global longitudinal strain. HR = hazard ratio. 95% CI = 95% confidence interval. ROC = receiver operating characteristic. The cut-off values of CWI and GLS were determined by ROC curve analysis with optimal sensitivity and specificity.

Fig. 4. All-cause mortality dichotomized according to GLS (≤−18.15 and >−18.15) and CWI (≤1271 mmHg-% and >1271 mmHg-%).

Loop area > 1271

Loop area ≤ 1271

26

Fig. 2. The prediction potential of left ventricular ejection fraction (LVEF); global longitudinal strain (GLS) and cardiate work index (CWI) on prognosis of end-stage kidney disease (ESRD) patients receiving regular hemodialysis. (a) LVEF; (b) GLS; (c) CWI used to predict all-cause mortality. (d) Comparison of CWI from survival (orange) vs. mortality (grey) groups. The CWI of these two cases are close to mean values of survival and mortality groups, respectively (1880867; mmHg vs. 1377.5178-mmHg).

The impact of volume overload on right heart function in end-stage renal disease patients on hemodialysis

Serkan Ünlü MD, MSc^{1,2,3} Asife Şahinarslan MD¹ | Gökhan Gökalp MD¹ | Özden Seçkin MD¹ | Selim Turgay Arınsoy MD⁴ | Nuri Bülent Boyacı MD¹ | Atiye Çengel MD¹

TABLE 42D speckle tracking strain measurements of rightventricle and right atrium before and after hemodialysis

Parameters	Before HD	After HD	Р
Right ventricle			
RV GLS (%)	- 24.1 ± 3.7	-19.9 ± 4.2	<.001
RV SR (s ⁻¹)	-1.3 ± 0.3	-1.2 ± 0.3	.084
RV early diastolic SR (s ⁻¹)	1.3 ± 0.4	1.1 ± 0.4	<.001
RV late diastolic SR (s ⁻¹)	1.1 ± 0.5	1.1 ± 0.4	.941
RVFW LS (%)	- 28.8 ± 4.7	- 23.7 ± 5.5	<.001
RVFW SR (s ⁻¹)	-1.8 ± 0.4	-1.7 ± 0.4	.089
RVFW early diastolic SR (s ⁻¹)	1.8 ± 0.5	1.4 ± 0.6	<.001
RVFW late diastolic SR (s ⁻¹)	1.5 ± 0.6	1.5 ± 0.6	.928
Right atrium			
RA reservoir LS (%)	45.6 ± 10.8	38.2 ± 8.1	<.001
RA contraction LS (%)	-16.7 ± 6.8	-16.4 ± 7.1	.835
RA reservoir SR (s ⁻¹)	2.3 ± 0.7	2.5 ± 0.5	.090
RA conduit phase SR (s ⁻¹)	-1.5 ± 0.8	-1.2 ± 0.6	<.001
RA contraction SR (s ⁻¹)	-2.2 ± 0.9	-2.2 ± 0.7	.596

The high ultrafiltration volumes are shown to be associated with myocardial stunning.

TABLE 3 Conventional echocardiographic measurements before and after hemodialysis

Parameters	Before HD	After HD	Р
Dimensions, areas, and vo	olumes of right hea	rt chambers	
RV basal diameter (cm)	3.4 ± 0.6	2.7 ± 0.5	<.001
RV mid-cavity diameter (cm)	2.1 ± 0.5	1.8 ± 0.4	<.001
RV longitudinal diameter (cm)	6.4 ± 0.8	5.8 ± 0.8	<.001
RA longitudinal axis (cm)	4.7 ± 0.6	4.5 ± 0.5	<.001
RA short axis (cm)	3.5 ± 0.6	3.0 ± 0.5	<.001
RA end-systolic area (cm ²)	13.8 ± 3.0	10.6 ± 2.8	<.001
RV diastolic area (cm ²)	13.7 ± 3.0	10.1 ± 2.8	<.001
RV end-systolic area (cm ²)	7.05 ± 2.0	5.9 ± 3.0	<.001
RV FAC (%)	48.3 ± 9.8	46.9 ± 9.2	.389
TAPSE (cm)	2.1 ± 0.4	1.7 ± 0.3	<.001
Doppler measurements o	f right ventricle		
E (cm/s)	71 ± 23	50 ± 15	<.001
A (cm/s)	58 ± 17	48 ± 16	<.001
E/A	1.3 ± 0.5	1.1 ± 0.3	.004
MPI	0.3 ± 0.2	0.5 ± 0.2	<.001
sPAP	43 ± 17	25 ± 12	<.001
Deceleration time (ms)	219.5 ± 77.8	250 ± 96.4	.032
Tissue Doppler measuren	nents of right ventr	icle	
E' (cm/s)	14 ± 3	10 ± 3.0	<.001
A' (cm/s)	16.0 ± 4.0	15.0 ± 4.0	.147
E'/A'	0.9 ± 0.4	0.7 ± 0.3	<.001
S' (cm/s)	15.0 ± 3.0	12.0 ± 3.0	<.001
E/E'	5.4 ± 2.3	5.5 ± 2.1	.648
MPI	0.5 ± 0.1	0.6 ± 0.2	.002
$IVA (m/s^2)$	354 + 117	379 + 141	066

Echocardiography 2017

.....

Echocardiography in Hemodialysis Patients: Uses and Challenges

Diana Y.Y. Chiu, MBChB,^{1,2} Darren Green, PhD,^{1,2} Nik Abidin, MBBS,³ Smeeta Sinha, PhD,^{1,2} and Philip A. Kalra, MD^{1,2}

Box 1. Causes of an Enlarged Left Atrium in Hemodialysis Patients

Increased preload to left atrium

· Volume overload

AIKD

In Practice

- Mitral valve regurgitation
- Arteriovenous fistula
- · High-output states: chronic anemia

Increased afterload to left atrium

- Left ventricular systolic dysfunction
- Mitral stenosis
- Hypertension
- Left ventricular hypertrophy

CrossMarl

Figure 1. Classification of left ventricular (LV) geometry. Note: Relative wall thickness (RWT) is calculated from echocardiographic parameters by $(2 \times \text{posterior wall thickness})/\text{Left}$ ventricular diastolic diameter or septal wall thickness + (posterior wall thickness/Left ventricular diastolic diameter). Because LV mass end-diastolic volume (M/V) is directly proportional to RWT (RWT of 0.32-0.42 corresponds to M/V of 1.0-1.5), RWT may be replaced by M/V whereby an enlarged M/V with increased LV mass index is classified as concentric hypertrophy. In concentric remodeling and hypertrophy, end-diastolic volume is reduced, whereas in eccentric hypertrophy, end-diastolic volume is enlarged. Abbreviation: LVMI, left ventricular mass index. Figure reproduced from Gerdts¹⁵ with permission of Oxford Uni-

LV Diastolic Dysfunction

The Ebb and Flow of Echocardiographic Cardiac Function Parameters in Relationship to Hemodialysis Treatment in Patients with ESRD

Charalampos Loutradis,¹ Pantelis A. Sarafidis,¹ Christodoulos E. Papadopoulos,² Aikaterini Papagianni,¹ and Carmine Zoccali ³

Table 2. Overview of studies evaluating changes in LV diastolic function echocardiographic indices during hemodialysis and association with intradialytic volume changes

Author	Year	N	Time of Evaluation	Main Finding	Diastolic Function Change	Association between Changes in Indices and Volume	Volume Marker
Drighil et al. ³⁰	2008	17	Before and after hemodialysis	LV E and E/A ratio, and RV E decrease	Deterioration	Yes (+)	Intradialytic weight loss
Sadler et al. ³¹	1992	24	Before, at 2 h, and after hemodialysis	LV and RV E and E/A ratio decrease	Deterioration	Yes (+)	Intradialytic weight loss
Dubin et al. ³²	2014	35	Before and during the last hour of hemodialysis	LV E/Em ratio decrease	Deterioration	Yes (+)	NT-proBNP
Fijalkowski <i>et al.</i> ³³	2006	25	Before and after hemodialysis	LV E and E/Em decrease	Deterioration	Yes (+)	Intradialytic weight loss
Graham et al. ³⁵	2003	17	Before and after hemodialysis	LV E and E/A ratio decrease	Deterioration	No	Intradialytic weight loss
Assa et al. ³⁶	2013	109	Before, at 60 and 180 intradialytic minutes, and after hemodialysis	LV E and Em decrease	Deterioration	No	BNP
Sarafidis <i>et al.</i> ²⁹	2016	41	Before and after two separate hemodialysis sessions	LV and RV E decrease	Deterioration	Yes (+)	Intradialytic weight loss

Studies are presented in chronologic order ("+" is used to present a positive correlation). E and Em, early non-tissue-Doppler and tissue-Doppler diastolic velocities (accordingly); A, late diastolic velocity; NT-proBNP, N-terminal pro b-type natriuretic peptide; BNP, brain natriuretic peptide.

Figure 2. Changes in echocardiographic indices of LV and RV remodeling and function during the 3-day and 2-day interdialytic intervals. Interdialytic changes in stroke volume (SV) and LVMi were similar, but interdialytic changes in left atrial volume index (LAVi), right atrial volume index (RAVi), tricuspid regurgitation peak gradient (PGr TVR), and RVSP were greater during the 3-day compared with the 2-day interval, suggesting increased pulmonary circulation and right ventricle loading over the 3-day period. (Illustration based on results from Tsilonis et al.⁴⁷)

Haemodialysis acutely deteriorates left and right diastolic function and myocardial performance: an effect related to high ultrafiltration volumes?

Ά Καρδιολογική Κλινική ΑΧΕΠΑ

Pantelis A. Sarafidis¹, Vasilios Kamperidis², Charalampos Loutradis¹, Konstantinos Tsilonis², Fani Mpoutsiouki², Athanasios Saratzis³, Georgios Giannakoulas², Georgios Sianos² and Haralambos Karvounis²

Table 2. Comparisons between pre- and post-haemodialysis body weight, BP, HR and LV echocardiographic indices on the first and a standard weekly haemodialysis session

Parameter	First weekly haem	nodialysis session (Mon	day or Tuesday)	Standard haemodialysis session (Wednesday/Thursday or Friday/Satu			
	Start	End	P-value	Start	End	P-value	
Body weight (kg)	72.2 ± 12.5	69.3 ± 12.5	< 0.001	71.7 ± 12.5	69.0 ± 12.6	< 0.001	
SBP (mmHg)	145.5 ± 21.6	135.9 ± 23.5	0.009	143.1 ± 19.8	135.1 ± 19.6	0.022	
DBP (mmHg)	77.9 ± 13.4	76.8 ± 11.2	0.547	78.2 ± 11.2	76.1 ± 13.1	0.224	
HR (bpm)	70.1 ± 10.9	73.6 ± 13.5	0.004	69.0 ± 10.3	75.2 ± 11.9	< 0.001	
LVMi (g/m²)	139.2 ± 66.2	121.2 ± 62.7	< 0.001	139.6 ± 63.4	127.7 ± 66.7	0.006	
LAVi (mL/m²)	44.6 ± 16.0	35.7 ± 14.3	< 0.001	43.0 ± 16.4	36.8 ± 17.1	< 0.001	
LVESVi (mL/m ²)	26.2 ± 12.9	24.1 ± 12.8	0.126	28.2 ± 13.3	25.8 ± 12.7	0.039	
LVEDVi (mL/m ²)	58.3 ± 19.9	54.8 ± 23.3	0.138	61.8 ± 20.6	58.3 ± 22.0	0.053	
LVEF (%)	55.7 ± 12.4	56.2 ± 11.1	0.798	56.1 ± 10.7	56.2 ± 12.3	0.901	
SV (mL)	80.4 ± 18.2	72.9 ± 26.8	0.083	83.2 ± 30.1	73.7 ± 21.1	0.022	
CO (L/min)	5.68 ± 1.50	5.35 ± 2.18	0.308	5.71 ± 2.09	5.46 ± 1.44	0.388	
S' _{mean} LV (m/s)	0.077 ± 0.017	0.080 ± 0.020	0.324	0.074 ± 0.015	0.077 ± 0.016	0.153	
LVOT (cm)	1.98 ± 0.24	1.97 ± 0.25	0.561	1.97 ± 0.23	1.98 ± 0.21	0.743	
LVOT VTI (cm)	26.6 ± 5.9	24.1 ± 7.2	0.036	27.3 ± 8.6	24.1 ± 5.9	0.010	
E wave (m/s)	0.96 ± 0.28	0.75 ± 0.27	< 0.001	0.89 ± 0.24	0.78 ± 0.29	< 0.001	
E/A	1.17 ± 0.44	0.94 ± 0.46	0.001	1.14 ± 0.49	0.92 ± 0.42	< 0.001	
DT (ms)	232.13 ± 62.87	242.99 ± 63.27	0.281	224.73 ± 53.28	225.02 ± 53.41	0.972	
E'_{mean} wave (m/s)	0.19 ± 0.03	0.17 ± 0.03	< 0.001	0.19 ± 0.04	0.18 ± 0.05	0.336	
E/E'_{mean}	5.11 ± 1.42	4.60 ± 1.64	0.025	4.95 ± 1.76	4.56 ± 2.05	0.056	
IVRT _{mean}	0.076 ± 0.019	0.079 ± 0.024	0.355	0.076 ± 0.020	0.077 ± 0.023	0.668	
TEI _{mean}	0.50 ± 0.14	0.55 ± 0.17	0.021	0.52 ± 0.23	0.56 ± 0.16	0.399	

Table 4. Univariate and multivariate linear regression analyses of parameters possibly affecting the change in *E* index, reflecting LV diastolic function, during a standard haemodialysis session

Parameter		Univa	ariate analysis		Multivariate analysis			
	Estimate	SEM	95% CI	P-value	Estimate	SEM	95% CI	P-value
Age (per year increase)	0.004	0.001	0.001-0.006	0.003	0.003	0.001	0.001-0.005	0.023
Sex (female versus male)	0.009	0.040	-0.072 - 0.090	0.824				
IDWL (per L increase)	0.046	0.013	0.019-0.073	0.001	0.042	0.012	0.018-0.066	0.001
SBP change (per mmHg increase)	0.001	0.001	-0.002 - 0.001	0.684				
HR change (per bpm increase)	-0.004	0.003	-0.009 - 0.002	0.166	-0.003	0.002	-0.007 - 0.001	0.119
LVMi change (per g/m ² increase)	0.001	0.001	-0.002 - 0.002	0.891				
CO change (per L/min increase)	0.014	0.011	-0.009 - 0.037	0.236				
TEI _{mean} change (per unit increase)	-0.122	0.081	-0.286-0.042	0.140	-0.067	0.066	-0.202-0.069	0.323

Haemodialysis acutely deteriorates left and right diastolic function and myocardial performance: an effect related to high ultrafiltration volumes?

Pantelis A. Sarafidis¹, Vasilios Kamperidis², Charalampos Loutradis¹, Konstantinos Tsilonis², Fani Mpoutsiouki², Athanasios Saratzis³, Georgios Giannakoulas², Georgios Sianos² and Haralambos Karvounis²

Table 3. Comparisons between pre- and post-haemodialysis values of RV echocardiographic indices and IVC diameter on the first and a standard weekly haemodialysis session

Parameter	First weekly haem	odialysis session (Mor	day or Tuesday)	Standard haemodialys	ursday or Friday/S	Saturday	
	Start	End	P-value	Start	End	P-value	
RAV (mL) RVEDD (cm) IVC diameter (cm) RAP (mmHg) RVSP (mmHg) RVOT VTI (cm)	27.30 ± 10.58 3.61 ± 0.87 1.93 ± 0.41 9.76 ± 3.82 44.64 ± 16.25 19.97 ± 3.44	$\begin{array}{l} 21.34 \pm 10.05 \\ 3.12 \pm 0.75 \\ 1.54 \pm 0.45 \\ 7.88 \pm 4.34 \\ 33.14 \pm 12.43 \\ 18.24 \pm 4.72 \end{array}$	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006	26.05 ± 13.46 3.49 ± 0.75 1.79 ± 0.39 9.32 ± 3.96 37.87 ± 13.74 19.61 ± 4.92	22.54 ± 12.21 3.18 ± 0.69 1.37 ± 0.40 6.24 ± 4.10 30.16 ± 12.78 17.67 ± 4.19	< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006	Table durin Pa
TRV max (m/s) S' RV (m/s) PVR (dyn s/cm ⁵) E RV wave (m/s) E' RV wave (m/s) E'/A' RV	$\begin{array}{l} 2.87 \pm 0.54 \\ 0.15 \pm 0.04 \\ 1.63 \pm 0.37 \\ 0.89 \pm 0.26 \\ 0.123 \pm 0.042 \\ 0.94 \pm 0.67 \end{array}$	$\begin{array}{l} 2.54 \pm 0.54 \\ 0.15 \pm 0.04 \\ 1.72 \pm 1.02 \\ 0.67 \pm 0.25 \\ 0.113 \pm 0.038 \\ 0.80 \pm 0.49 \end{array}$	<0.001 0.575 0.541 <0.001 0.183 0.069	$\begin{array}{l} 2.68 \pm 0.55 \\ 0.14 \pm 0.03 \\ 1.59 \pm 0.40 \\ 0.86 \pm 0.24 \\ 0.117 \pm 0.036 \\ 0.94 \pm 0.67 \end{array}$	$\begin{array}{c} 2.46 \pm 0.54 \\ 0.15 \pm 0.04 \\ 1.60 \pm 0.37 \\ 0.77 \pm 0.31 \\ 0.110 \pm 0.042 \\ 0.75 \pm 0.46 \end{array}$	< 0.001 0.149 0.806 < 0.001 0.313 0.028	Aş Se ID SE HI RV
<i>E/E</i> ′ RV TEI RV	8.55 ± 3.28 0.52 ± 0.20	7.10 ± 2.54 0.59 ± 0.20	0.008 0.021	7.97 ± 2.19 0.50 ± 0.14	7.45 ± 2.88 0.52 ± 0.17	0.308 0.145	TH

able 5. Univariate and multivariate linear regression analyses of parameters possibly affecting the change in *E* RV index, reflecting RV diastolic function, uring a standard haemodialysis session

Parameter	Univariate analysis Multivariate analysis							
	Estimate	SEM	95% CI	P-value	Estimate	SEM	95% CI	P-value
Age (per year increase)	0.003	0.002	0.001-0.006	0.095	0.001	0.001	-0.001 - 0.004	0.286
Sex (female versus male)	0.009	0.048	-0.089 - 0.107	0.850				
IDWL (per L increase)	0.080	0.013	0.053-0.106	< 0.001	0.084	0.013	0.057-0.110	< 0.001
SBP change (per mmHg increase)	0.002	0.001	-0.001-0.004	0.153	0.001	0.001	-0.001 - 0.003	0.199
HR change (per bpm increase)	-0.008	0.003	-0.014 - 0.002	0.013	-0.006	0.002	-0.010 - 0.001	0.018
RVEDD change (per cm increase)	-0.009	0.069	-0.150-0.131	0.896				
RAP change (per mmHg increase)	0.007	0.006	-0.006 - 0.020	0.292				
TEI RV change (per unit increase)	-0.239	0.138	-0.519 - 0.040	0.091	-0.052	0.095	-0.246-0.142	0.588

Konstantinos Tsilonis, MD,¹ Pantelis A. Sarafidis, MD, MSc, PhD,^{2,3} Vasilios Kamperidis, MD, MSc, PhD,¹ Charalampos Loutradis, MD, MSc,² Panagiotis I. Georgianos, MD, PhD,³ Konstantinos Imprialos, MD,² Antonios Ziakas, MD, PhD,¹ Georgios Sianos, MD, PhD,¹ Pavlos Nikolaidis, MD, PhD,³ Anastasios N. Lasaridis, MD, PhD,³ and Haralambos Karvounis, MD, PhD¹

 Table 4. Univariate and Multivariate Linear Regression Analysis of Parameters Possibly Affecting the Change in RVSP During

 Interdialytic Intervals

	Univariate Analysis		Multivariate Analysis	
Parameter	Estimate \pm SE (95% CI)	P	Estimate ± SE (95% CI)	Р
IDWG	1.512 \pm 0.707 (0.104 to 2.920)	0.04	1.645 \pm 0.659 (0.332 to 2.958)	0.02
SBP change	0.171 ± 0.144 (-0.114 to 0.457)	0.2	, , ,	
Heart rate change	-0.028 ± 0.128 (-0.283 to 0.227)	0.8		
Sm RV change	-2.246 ± 26.880 (-55.740 to 51.248)	0.9		
E/Em RV change	0.820 ± 0.419 (-0.012 to 1.653)	0.05	1.142 \pm 0.426 (0.293 to 1.990)	0.009
PVR change	6.177 \pm 2.786 (0.633 to 11.721)	0.03	7.034 \pm 2.644 (1.766 to 12.303)	0.01

Changes in right ventricular dimensions, function, and pulmonary circulation loading according to the degree of interdialytic weight gain in maintenance hemodialysis patients

Vasileios Anastasiou¹ | Marieta P. Theodorakopoulou² | Vasileios Kamperidis¹ | Stylianos Daios¹ | Konstantinos Tsilonis¹ | Maria-Eleni Alexandrou² | Dimitrios V. Moysidis¹ | Afroditi Boutou³ | George Giannakoulas¹ | Antonios Ziakas¹ | Pantelis Sarafidis²

TABLE 2 Comparison of the echocardiographic indices of right ventricular performance and volume status at the start and end of the 3-d Interdialytic Interval depending on the IDWG corrected for dry weight.

	IDWG>4.5% (<i>n</i> = 21	.)		IDWG <4.5% (<i>n</i> = 20)			% (n = 20) Net changes of high vs. low IDWG% groups		
Parameters	3-day start	3-day end	p-value	3-day start	3-day end	p-value	>4.5%	<4.5%	p-value
RV Sm (cm/s)	14 ± 3.31	15.21 ± 3.91	0.197	14.35 ± 3.77	14.65 ± 4.83	0.77	1.21 ± 3.9	0.3 ± 4.5	0.49
RVOT VTI	17.2 ± 3.54	20.34 ± 3.38	< 0.001	18.34 ± 4.72	20.34 ± 2.62	0.042	3.14 ± 2.65	1.99 ± 3.96	0.45
RV Tei index	0.48 (0.43-0.66)	0.50 (0.36-0.67)	0.594	0.53 (0.43-0.76)	0.52 (0.35-0.62)	0.13	-0.2 (-0.12-0.12)	-0.06 (-0.17-0.04)	0.13
RV E/Em	6.93 ± 2.54	8.46 ± 3.39	< 0.001	7.16 ± 2.1	8.85 ± 3.33	0.028	1.53 ± 1.40	1.69 ± 3.07	0.84
TR Vmax (m/s)	2.26 ± 0.42	2.83 ± 0.49	< 0.001	2.56 ± 0.57	2.78 ± 0.59	0.013	0.57 ± 0.33	0.30 ± 0.50	0.15
PGr TRV (mm Hg)	21.15 ± 8.38	33.17 ± 11	< 0.001	27.52 ± 12.5	33.72 ± 14.6	0.026	12.02 ± 7.57	6.19 ± 11.43	0.11
RVSP (mm Hg)	26.43 ± 11.17	42.86 ± 11.9	< 0.001	32.52 ± 13.7	46.63 ± 19.2	< 0.001	16.43 ± 5.37	14.11 ± 13.38	0.015
PVR (dyn*s*cm ⁻⁵)	1.44 (1.25-1.72)	1.53 (1.36-1.77)	0.59	1.49 (1.28-1.75)	1.51 (1.32-1.98)	0.9	0.05 (-0.13-0.18)	0.06 (-0.42-0.35)	0.036
RVEDD (mm)	3.28 ± 0.58	3.71 ± 0.66	< 0.001	3.09 ± 0.73	3.33 ± 0.79	0.015	0.43 ± 0.47	0.24 ± 0.39	0.47
RAVi (mL/m ²)	19.38 (15.97-30.77)	30.89 (20.63-35.00)	< 0.001	17.47 (15.24-20.55)	24.97 (18.81-31.23)	< 0.001	4.74 (3.23-13.50)	5.38 (1.28-11.51)	0.22
IVCd (cm)	1.29 ± 0.32	1.85 ± 0.4	< 0.001	1.5 ± 0.46	2 ± 0.44	< 0.001	0.55 ± 0.27	0.50 ± 0.39	0.29

Intradialytic Cardiac Magnetic Resonance Imaging to Assess Cardiovascular Responses in a Short-Term Trial of Hemodiafiltration and Hemodialysis

Charlotte Buchanan,* Azharuddin Mohammed,[†] Eleanor Cox,* Katrin Köhler,[‡] Bernard Canaud,[‡] Maarten W. Taal,[†] Nicholas M. Selby,[†] Susan Francis,^{*} and Chris W. McIntyre^{§∥}

> Α 180

В

SVi

170

160

140

130

110

100

90

55.0

€ 50.0

45.0

40.0

35.0

J 30.0

С

2.4

2.2 2.0 1.0 1.4 1.4 1.2 1.0 1.0 0.8

0.6

-10

0 15

-40

50

80

140

Time

170

H 120

ିଙ୍କ ¹⁵⁰ି

1st CMR study intradialytic

Troponin T for the Detection of Dialysis-Induced Myocardial Stunning in Hemodialysis Patients

Tobias Breidthardt, James O. Burton, Aghogho Odudu, Mohamed Tarek Eldehni, Helen J. Jefferies, and Christopher W. McIntyre

All Patients	Patients Not Developing	Patients Developing
(<i>n</i> =70)	HD-Induced Stunning	HD-Induced Stunning

Table 2. Detection of hemodialysis-induced myocardial stunning in ur	nivariate and multivariable regression analys	es
Predictor	Odds Ratio (95% CI)	P Value
Univariate analysis		
age	1.05 (1.01–1.09)	0.02
malesex	1.93 (0.64–5.76)	0.24
history of coronary artery disease	2.11 (0.71–6.31)	0.18
history of diabetes mellitus	4.38 (1.40–13.76)	0.01
history of arterial hypertension	1.38 (0.51–3.74)	0.53
left ventricular ejection fraction	0.98 (0.93–1.03)	0.42
dialysis vintage	0.99 (0.98–1.01)	0.57
interdialytic hypotension (per every additional episode)	1.97 (1.05–3.69)	0.04
ultrafiltration volume (for every additional liter)	2.54 (1.22–5.31)	0.01
troponin T (for every 0.1-ng/ ml increase)	16.38 (2.84–94.43)	, 0.01
troponin Tlevel. 0.06 ng/ml	10.96 (3.11–38.62)	, 0.01
Multivariable analysis		
age	1.05 (0.99–1.11)	0.08
history of diabetes mellitus	2.95 (0.59–14.53)	0.18
interdialytic hypotension (per every additional episode)	1.95 (0.80–4.80)	0.14
ultrafiltration volume (for every additional liter)	4.38 (1.01–18.24)	0.04
troponin T (for every 0.1-ng/ ml increase)	9.33 (1.63–53.43)	0.01

Ά Καρδιολογική Κλινική ΑΧΕΠΑ

Clin JASN 2012

High-sensitive troponin T increase after hemodialysis is associated with left ventricular global longitudinal strain and ultrafiltration rate

Serkan Ünlü^{1, 2, 3}, Asife Şahinarslan¹, Burak Sezenöz¹, Orhan Mecit Uludağ³, Gökhan Gökalp¹, Özden Seçkin¹, Selim Turgay Arınsoy⁴, Özlem Gülbahar⁵, Nuri Bülent Boyacı¹

Figure 1. High-sensitive cardiac troponin T (hs-cTnT) levels before and after hemodialysis (HD). Comparison between mean values before and after HD is presented. Significance is indicated on the graph.

Figure 2. Comparison between relative change of highsensitive cardiac troponin T (hs-cTnT) (y-axis) and the ultrafiltration rate (x-axis). The correlation coefficient (R) is indicated. P value is < 0.001.

Figure 3. Comparison between relative change of global longitudinal strain (GLS) measurements (y-axis) and relative change in high-sensitive cardiac troponin T (hs-cTnT) (x-axis). The correlation coefficient (R) is indicated. P value is < 0.001.

50

Relative change in hs-cTnT [%]

100

150

R = 0.70

50

40

10

0+

-50

Figure 4. Comparison between relative change of global longitudinal strain (GLS) measurements (y-axis) and the ultrafiltrated volume (x-axis). The correlation coefficient (R) is indicated. P value is < 0.001.

Hemodialysis-Induced Regional Left Ventricular Systolic Dysfunction and Inflammation: A Cross-sectional Study

Solmaz Assa, MD,¹ Yoran M. Hummel, BSc,² Adriaan A. Voors, MD, PhD,² Johanna Kuipers,³ Ralf Westerhuis, MD, PhD,^{1,3} Henk Groen, MD, PhD,⁴ Stephan J.L. Bakker, MD, PhD,¹ Anneke C. Muller Kobold, PhD,⁵ Wim van Oeveren, PhD,^{6,7} Joachim Struck, PhD,⁸ Paul E. de Jong, MD, PhD,¹ and Casper F.M. Franssen, MD, PhD¹

HD-Induced

Regional LVSD (n = 29)

No HD-Induced

Regional LVSD (n = 76**)**

All Patients (N = 105)

Figure 1 Algorithm for evaluating and managing symptomatic cardiac dysfunction in hemodialysis patients.

Hemodialysis Int 2010

Ά Καρδιολογική Κλινική ΑΧΕΠΑ

Sudden Cardiac Death Among Hemodialysis Patients

Melissa S. Makar, MD,^{1,2} and Patrick H. Pun, MD, MHS^{1,2}

Table 1. Possible Strategies for SCD Prevention in HD Patients

AJKD 2017

ΕΥΧΑΡΙΣΤΩ

vkamperidis@outlook.com

@VKamperidis