

Treatment of IgA Nephropathy

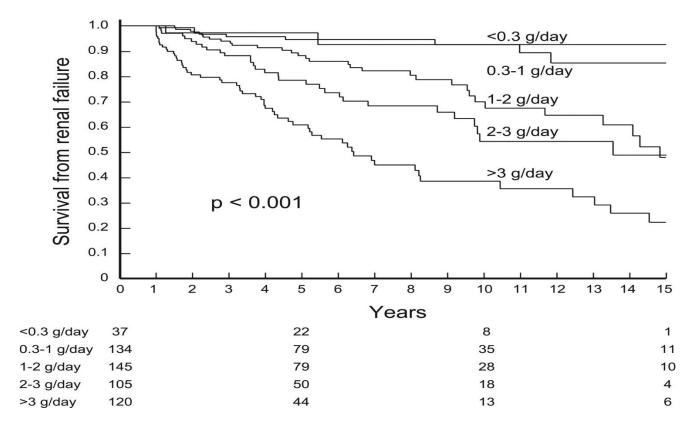
Manuel Praga Departamento de Medicina, Universidad Complutense Madrid

Proposed pathways involved in the pathogenesis of IgAN: multi-hit mechanism.

Suzuki H et al. JASN 2011;22:1795-1803

IgAN. Clinical Presentations

Most Frequent Presentation:


Microscopic hematuria+proteinuria with or without episodes of gross hematuria (usually coincidental with respiratory infections)

«Atypical presentations»

-AKI accompanying episodes of macroscopic hematuria

- Malignant hypertension/Thrombotic microangiopathy lesions in kidney biopsy
- Crescentic IgAN (>50% glomeruli with crescents)
 - Complete nephrotic syndrome

Renal survival by category of TA-proteinuria

Remission of proteinuria improves prognosis in IgA nephropathy

Heather N Reich et al J Am Soc Nephrol 2007;18:3177-3183

	idney survival rates within 10 on time-averaged proteinuria
<0.44	0.78
g/g	(0.68-0.85)
0.44 – 0.88	0.69
g/g	(0.56-0.79)
0.88 – 1.76	0.40
g/g	(0.31-0.48)
≥ 1.76	0.15
g/g	(0.09-0.22)

At a 1 ml/min/year decline in eGFR, ~40% of adult patients aged <50 years at diagnosis reach kidney failure within lifetime

Pitcher D at el. Long-Term Outcomes in IgA Nephropathy. Clin J Am Soc Nephrol 2023; 18(6):727-738

Remission of Hematuria Improves Renal Survival in IgA Nephropathy

Angel M. Sevillano,* Eduardo Gutiérrez,* Claudia Yuste,* Teresa Cavero,* Evangelina Mérida,* Paola Rodríguez,* Ana García,* Enrique Morales,* Cristina Fernández,[†] Miguel Angel Martínez,[‡] Juan Antonio Moreno,[§] and Manuel Praga*^{II}

Cohort of 112 biopsy-proven IgAN, regularly monitored with urine sediment examination

Two groups according with the mean value of hematuria (erythrocytesxhpf) during follow-up (Time-averaged hematuria: TA-H): -Persistent Hematuria (TA-H >5 hxhpf) -Negative or minimal Hematuria (TA-H <5 hxhpf)

Patients were also divided according to the magnitude of Time-averaged proteinuria (TA-P): -*TA-P* <0.75 g/d -*TA-P* >0.75 g/d

JASN 2017;28:3089-3099

Remission of hematuria improves renal survival in IgAN

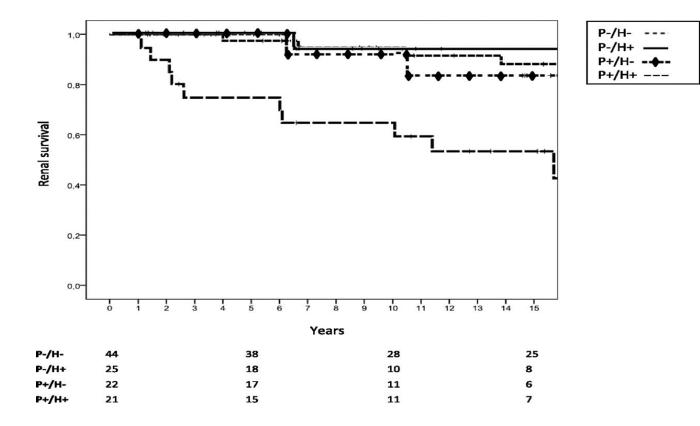


Table 5. Rate of renal function decline before and after hematuria disappearance

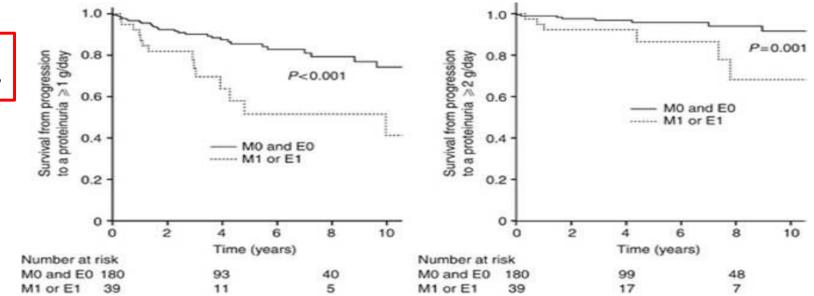
Variable	Before Hematuria Disappearance	After Hematuria Disappearance	PValue
Rate of renal function decline, ml/min per 1.73 m ² per yr ^a	-6.45 ± 14.66	-0.18 ± 2.56	0.001
Follow-up, mo	5.98±5.92°	10.71±9.5°	0.003

Baseline variables				
	Absent $(n=28)$	Present ($n = 97$)	P-value	Total
Histology, n (%)				
M (1 versus 0)	18 (64.3)	84 (86.6)	0.007	102 (81.6)
E (1 versus 0)	0 (0.0)	30 (30.9)	0.001	30 (24.0)
S (1 versus 0)	20 (71.4)	62 (63.9)	0.46	82 (65.6)
$T (\geq 1 \text{ versus } 0)$	13 (46.4)	32 (33.0)	0.19	45 (36.0)
C (>1 versus 0)	3 (10.7)	31 (32.0)	0.026	34 (27.2)

Table 1. Association between patient characteristics and hematuria at baseline

The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy

Shane A. Bobart ^[]^{1,*}, Mariam P. Alexander^{2,*}, Khaled Shawwa ^[], Lisa E. Vaughan³, Ranine Ghamrawi¹, Sanjeev Sethi ^[]², Lynn Cornell², Richard J. Glassock⁴, Fernando C. Fervenza¹ and Ladan Zand¹


Table 2. Estimates for rate of eGFR change per year by median degree of hematuria throughout follow-up

Median degree of hematuria throughout follow-up ⁴	eGFR decline rate (SE) ^b		
0	5.80 (2.05)		
1 to ≤ 3	2.10 (1.44)		
3-10	-1.60 (1.14)		
11-20	-5.30 (1.38)		
21-30	-9.00 (1.96)		
31-40	-12.70 (2.67)		
41-50	-16.40 (3.43)		
51-100	-20.10 (4.22)		
>100	-23.80 (5.01)		

Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments

MEST-C score

- Mesangial proliferation
 Endocapillary hypercellularity
- Segmental glomerulosclerosis
- Tubulointerstitial fibrosis
- Crescents

IgAN Management

Non-Immunosuppressive drugs

(+ conservative antiproteinuric/renoprotective measures: smoking, obesity, physical activity, salt restriction)

-RAS blockers (ACEI; ARBs)

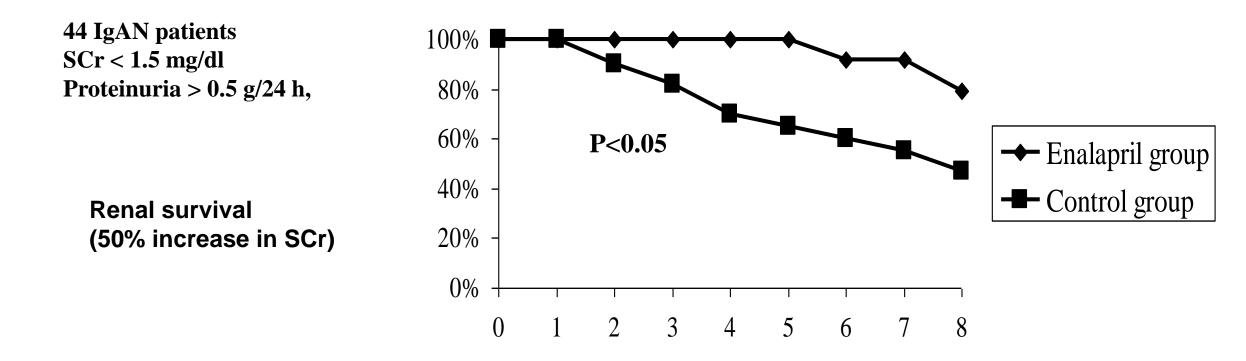
-Antiproteinuric diuretics (antialdosteronics; thiazides; chortalidone; amiloride)

-SGLT2i

-Sparsentan

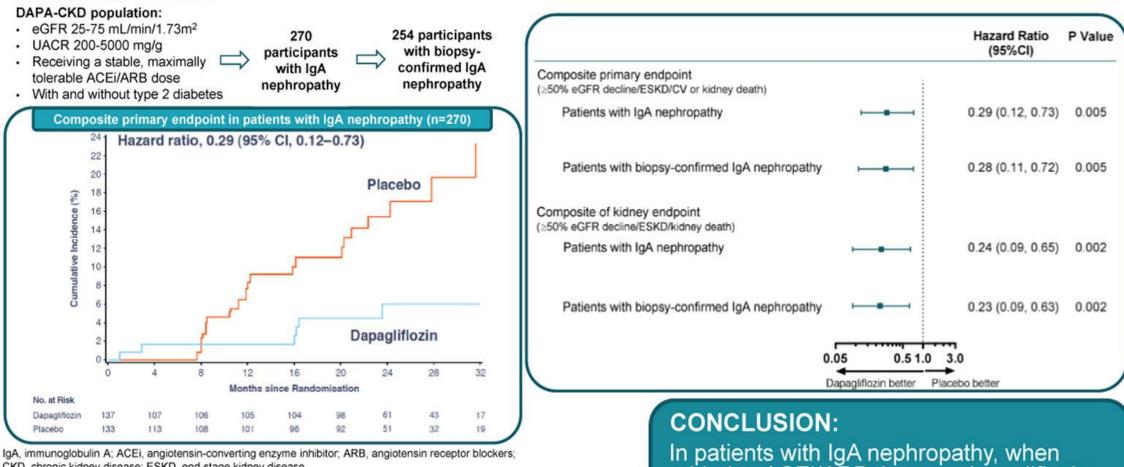
-Endothelin antagonists (Atrasentan and others; ongoing trials)

Immunosuppressive/pathogenicallytargeted drugs


-Corticosteroids

-MMF

-Targeted-released budesonide


Ongoing trials with positive preliminary results -Anti-April drugs -Complement blockers (Iptacopan, Avacopan, Eculizumab, Cemdisiran)

Treatment of IgA nephropathy with ACE inhibitors A randomized and controlled trial

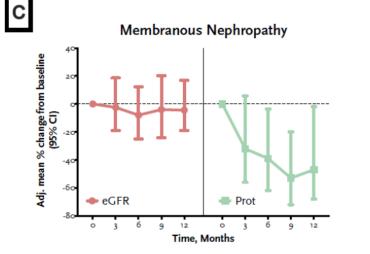
Praga M et al J Am Soc Nephrol 2003; 14:1578-1583

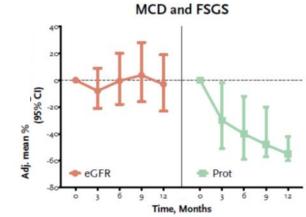
A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy.

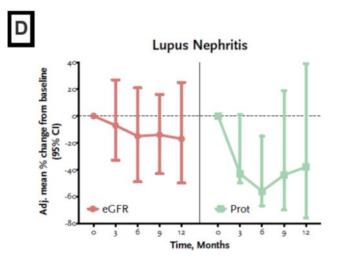
added to ACEi/ARB therapy, dapagliflozin significantly and substantially reduced the

risk of CKD progression

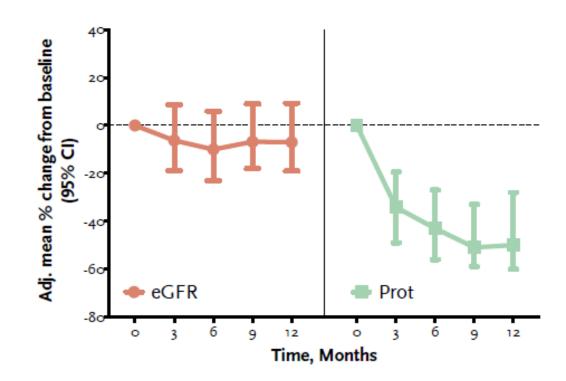
IgA, immunoglobulin A; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blockers; CKD, chronic kidney disease; ESKD, end-stage kidney disease



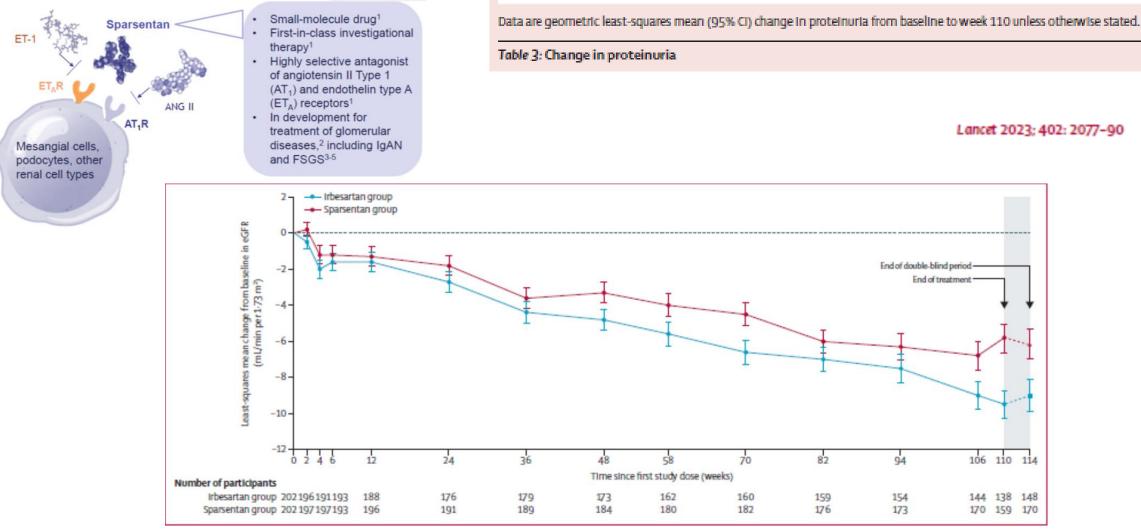



Nephrol Dial Transplant, 2024, **39**, 328–340 https://doi.org/10.1093/ndt/gfad175 Advance access publication date: 7 August 2023

Sodium-glucose cotransporter 2 inhibition in primary and secondary glomerulonephritis



Number of Patients 104 104 70 43 25


lgAN=192

Caravaca-Fontán F et al. NDT 2024

Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial

Brad H Rovin*, Jonathan Barratt*, Hiddo J L Heerspink, Charles E Alpers, Stewart Bieler, Dong-Wan Chae, Ulysses A Diva, Jürgen Floege, Loreto Gesualdo, Jula K Inrig, Donald E Kohan, Radko Komers, Laura Ann Kooienga, Richard Lafayette, Bart Maes, Robert Małecki, Alex Mercer, Irene L Noronha, Se Won Oh, Chen Au Peh, Manuel Praga, Priscila Preciado, Jai Radhakrishnan, Michelle N Rheault, William E Rote, Sydney CW Tang, Vladimir Tesar, Howard Trachtman, Hernán Trimarchi, James A Tumlin, Muh Geot Wong, Vlado Perkovic, on behalf of the DUPRO steering committee and PROTECT Investigators†

	Sparsentan group (n=202)	Irbesartan group (n=202)
Urine protein-to-creatinine ratio, g/g	-42.8% (-49.8 to -35.0)	-4·4% (-15·8 to 8-7)
Urine protein excretion, g per day	-46-9% (-53-4 to -39-5)	-5-9% (-17-9 to 7-9)
Urine albumin-to-creatinine ratio, g/g	-56-0% (-62-1 to -49-1)	-17-3% (-29-1 to -3-5)
Urine albumin excretion, g per day	-58-8% (-64-7 to -52-0)	-17-9% (-30-1 to -3-6)

Management of IgAN

Non-Immunosuppressive drugs

(+ conservative antiproteinuric/renoprotective measures: smoking, obesity, physical activity, salt restriction)

-RAAS blockers

-SGLT2i

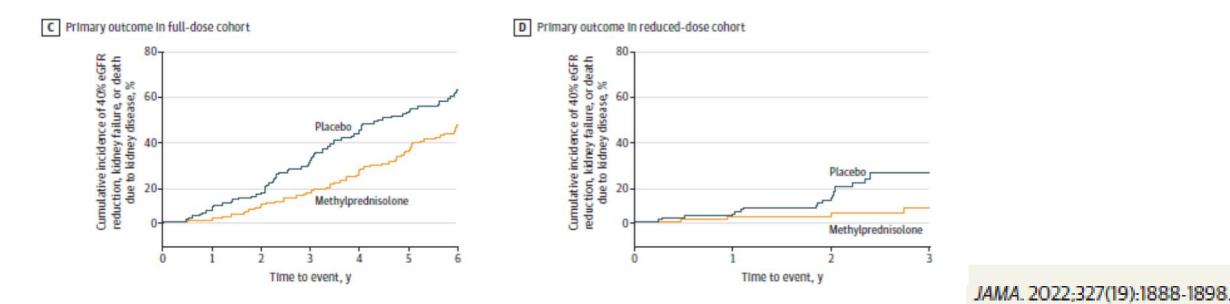
-Sparsentan

-Endothelin antagonists

Immunosuppressive/pathogenicallytargeted drugs

-Corticosteroids

-MMF


-Targeted-released budesonide

Ongoing trials with positive preliminary results -Anti-April drugs -Complement blockers (Iptacopan) JAMA | Original Investigation

Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients With IgA Nephropathy The TESTING Randomized Clinical Trial

INTERVENTIONS Participants were randomized in a 1:1 ratio to receive oral methylprednisolone (initially 0.6-0.8 mg/kg/d, maximum 48 mg/d, weaning by 8 mg/d/mo; n = 136) or placebo

(n = 126). After 262 participants were randomized, an excess of serious infections was identified, leading to dose reduction (0.4 mg/kg/d, maximum 32 mg/d, weaning by 4 mg/d/mo) and addition of antibiotic prophylaxis for pneumocystis pneumonia for subsequent participants (121 in the oral methylprednisolone group and 120 in the placebo group).

Mycophenolate Mofetil Combined With Prednisone Versus Full-Dose Prednisone in IgA Nephropathy With Active Proliferative Lesions: A Randomized Controlled Trial

176 patients with IgAN Active proliferative lesions in renal biopsy Proteinuria > 1 g/24H eGFR > 30 mL/min/1.73 m2

Intervention:

-MMF 1.5 g/d for 6 m + Prednisone 0.4-0.6 mg/kg/d for 2 m, tapered for other 4 m

OR

-Prednisone 0.8-1 mg/Kg/d for 2 m, tapered for other 4 m

Outcome: Complete remission, defined by Proteinuria <0.3 g/d and stable serum creatinine

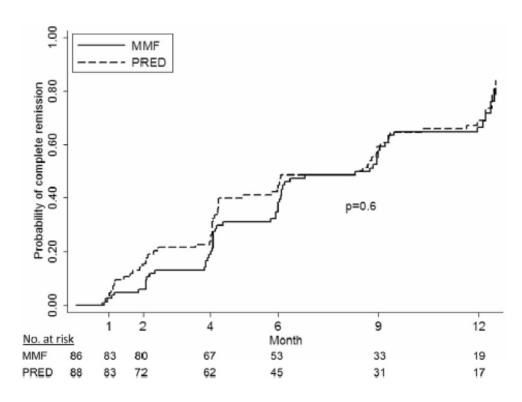
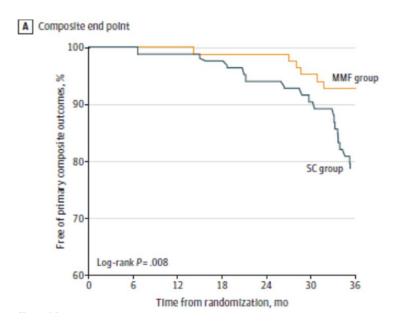


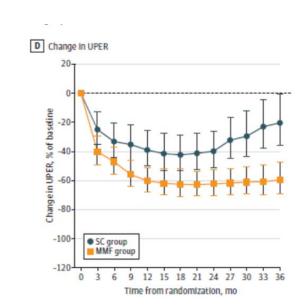
Figure 2. Kaplan-Meier analysis for the probability of complete remission. Abbreviations: MMF, mycophenolate mofetil; PRED, prednisone.

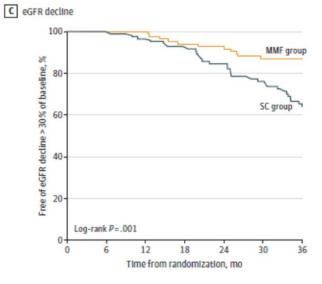
Significantly less side effects in the MMF+ low Prednisone arm

Original Investigation | Nephrology

Effectiveness of Mycophenolate Mofetil Among Patients With Progressive IgA Nephropathy A Randomized Clinical Trial

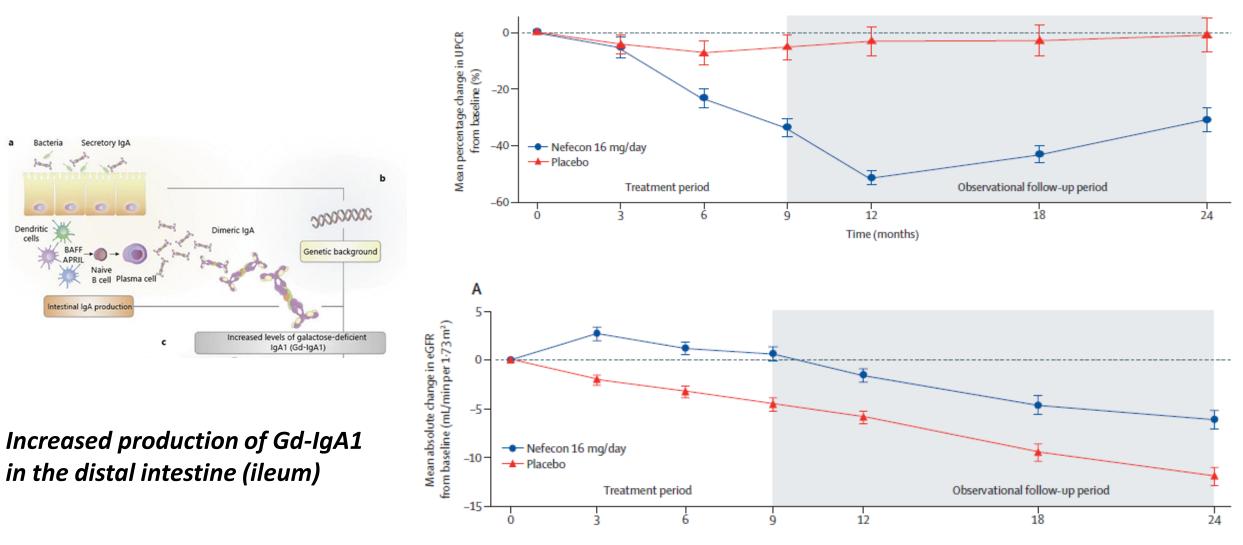

<u>170 patients</u> <u>randomized to:</u>


-MMF 1.5 g/d for 12 m, 0.75-1.0 g for at least 6 months plus SOC

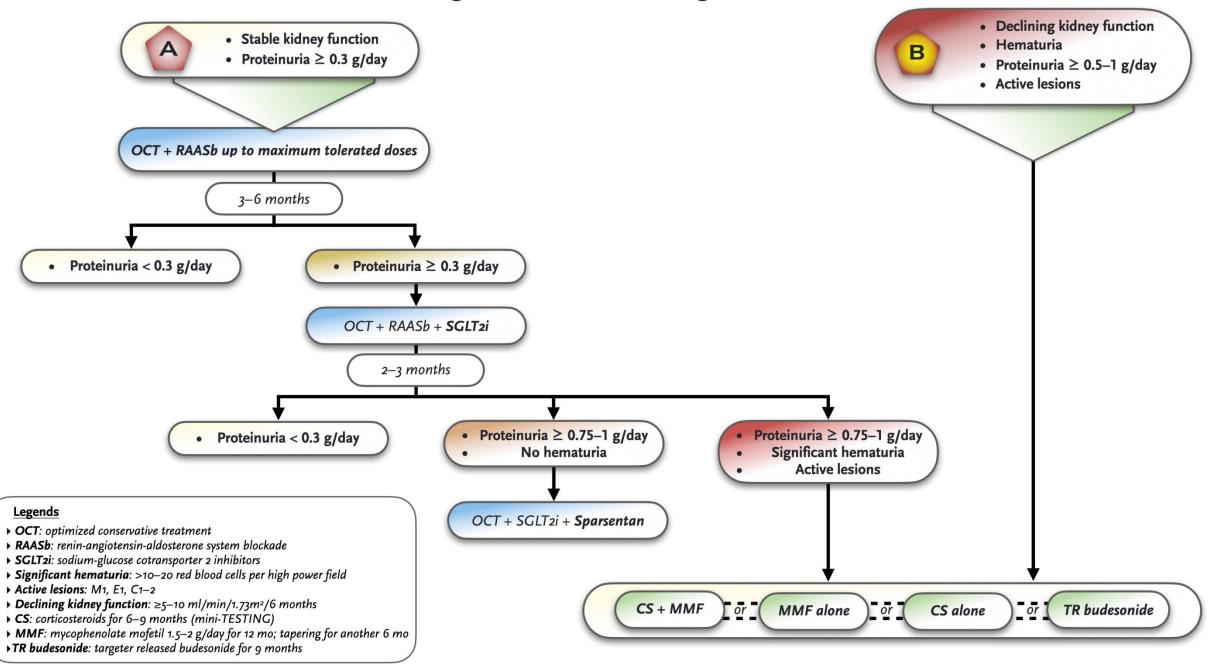

<u>OR</u>

-SOC alone

Outcomes: -Composite of doubling of SCr, ESKD or death -Progression of CKD: eGFR decrease >30% if baseline eGFR>60 « >50% « <60



Hou, JAMA Netw Open. 2023 Feb 1;6(2):e2254054


Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NeflgArd): 2-year results from a randomised phase 3 trial

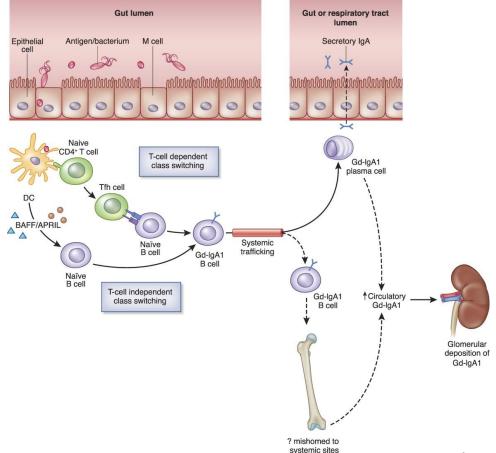
Richard Lafayette, Jens Kristensen, Andrew Stone, Jürgen Floege, Vladimir Tesal, Hernán Trimarchi, Hong Zhang, Necmi Eren, Alexander Paliege, Heather N Reich, Brad H Rovin, Jonathan Barratt, on behalf of the NeflgArd trial investigators

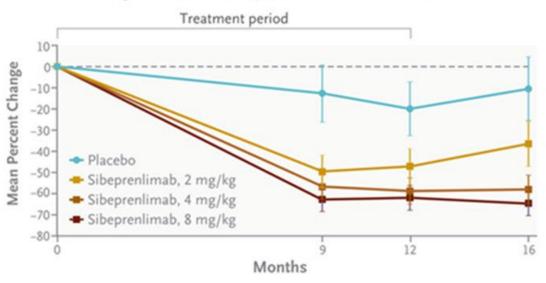
Lancet 2023; 402: 859-70

IgAN Treatment Algorithm

Refractory IgAN?

Targeting APRIL in the Treatment of IgA Nephropathy

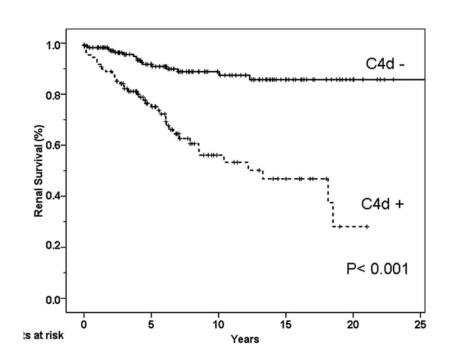

The NEW ENGLAND JOURNAL of MEDICINE

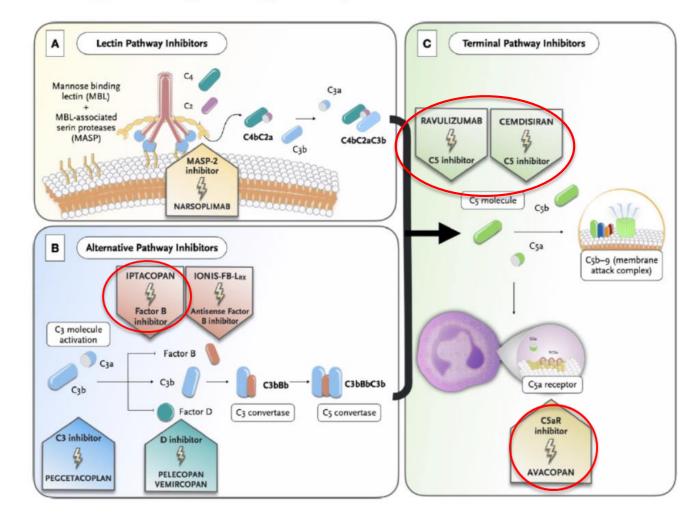

RESEARCH SUMMARY

A Phase 2 Trial of Sibeprenlimab in Patients with IgA Nephropathy

Mathur M et al. DOI: 10.1056/NEJMoa2305635

Change in 24-Hr Urinary Protein-to-Creatinine Ratio




CONCLUSIONS

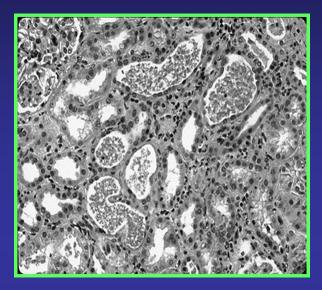
Among patients with IgA nephropathy at high risk for disease progression, 12 months of treatment with sibeprenlimab resulted in a significantly greater reduction in proteinuria than placebo.

Cheung CJASN 2024; Mathur NEJM 2024

Refractory IgAN? Targeting complement in IgA nephropathy

IgAN. Clinical Presentations

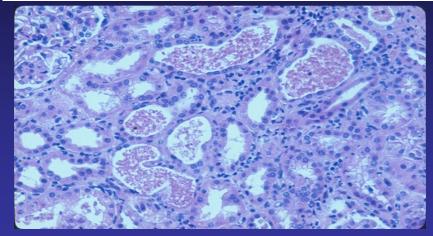
Most Frequent Presentation:


Microscopic hematuria+proteinuria with or without episodes of gross hematuria (usually coincidental with respiratory infections)

«Atypical presentations»

- AKI accompanying episodes of macroscopic hematuria
- Malignant hypertension/Thrombotic microangiopathy lesions in kidney biopsy
- Crescentic IgAN (>50% glomeruli with crescents): No RCT: Corticosteroids, Cyclophosphamide... (KDIGO 2021)
- Complete nephrotic syndrome: Treatment similar to that Minimal change disease

Acute worsening of renal function during episodes of macroscopic hematuria in IgA nephropathy

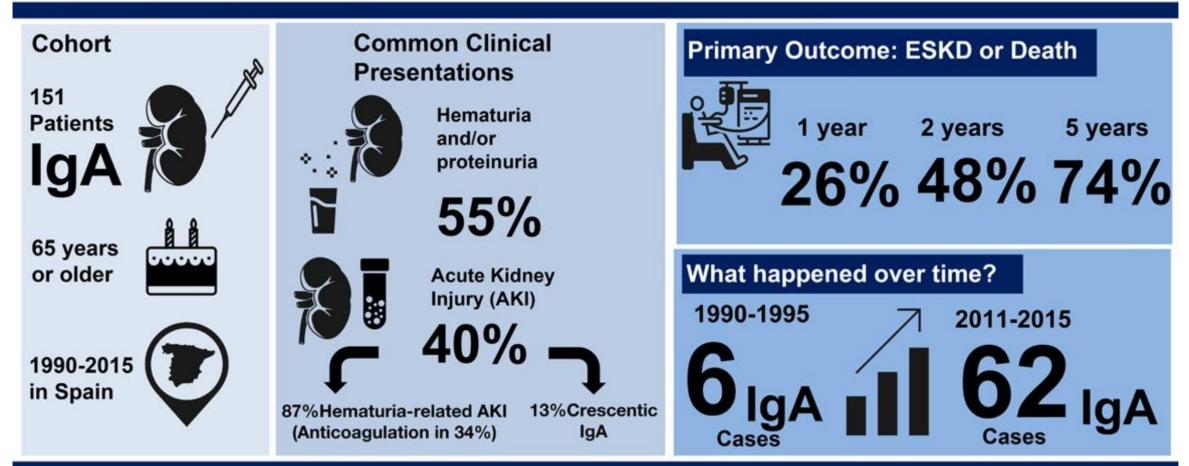

Manuel Praga, Victor Gutierrez-Millet, José J. Navas, Luis M. Ruilope, José M. Morales, José M. Alcazar, Ignacio Bello, and José L. Rodicio

Complete recovery of renal function in every patient 1-2 months after the onset of gross hematuriama necrosis. Mean age: 24 yr

Praga M et al. Kidney Int 28: 69-74, 1985

Factors That Determine an Incomplete Recovery of Renal Function in Macrohematuria-Induced Acute Renal Failure of IgA Nephropathy

25% of the patients did not recover their baseline renal function Mean age 46.5 yr


Factors associated with an incomplete recovery:

- ➢ Age > 50 yr
- Duration of gross hematuria > 10 d
- Baseline renal function
- Severity of tubular necrosis

Gutiérrez E. et al. Clin J Am Soc Nephrol 2007; 2, 51-57

What is the presentation and outcomes of IgA nephropathy among older adults in Spain?

Conclusions The diagnosis of IgA nephropathy among older adults in Spain has progressively increased in recent years. Prognosis was poor.

Angel M. Sevillano, Monserrat Diaz, Fernando Caravaca-Fontán, Clara Barrios, et al. **IgA Nephropathy in Elderly Patients. CJASN doi: 10.2215/CJN.**13251118. Visual Abstract by Pablo Garcia, MD

Thrombotic microangiopathy in patients with malignant hypertension

Cavero T et al, NDT 2023; 38(5):1217-1226

199 patients with malignant hypertension of different etiologies

44%
16%
13%
9%
7%
5%
5%

Glomerular diseases: 33 (16.6) IgAN: 23 (11.6) Diabetic nephropathy: 4 (2) FSGS: 2 (1) IC-MPGN: 1 (0.5)

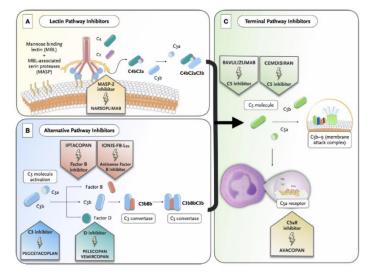


Table 1: Summary of studies addressing TMA lesions in IgAN patients, and the reported outcomes.

Reference	N	TMA (%)	Hypertension in patients with TMA (%)	Malignant hypertension in patients with TMA (%)	ESKD in patients with TMA (%)
Neves et al. [46]	118	18	100		71ª
Zhang et al. [48]	1683	26			28 ^b
El Karoui et al. [45]	128	53	71	26	48 ^c
Chua et al. [53]	128	18	77	8	49 ^d
Faria et al. [52]	126	29			
Chang et al. [50]	435	2.3	100	60	60 ^e
Cai et al. [49]	944	20	67	10	39 ^f

Caravaca-Fontan F et al. Clin Kidney J 2023

Conclusions

- Treatment decisions should be based on the amount of <u>Proteinuria</u>, the presence/amount of <u>Hematuria</u>, the evolution of <u>renal function (eGFR)</u> and histologic lesions (<u>MEST-C score</u>)
- Differentiate Antiproteinuric/non-inmmunosuppressive treatments: RAAS blockers, SGLT2i, endothelin blockers
 from Immunosuppressive/pathogenically targeted drugs
 Corticosteroids, MMF, TR-budesonide, anti-APRIL/BAFF drugs, complement blockers
- Immunosuppressive/pathogenically targeted drugs for patients with proteinuria >0.75-1 g/d, hematuria, active lesions, declining eGFR

!! ευχαριστώ !!